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Characterization of degree frequency distribution in protein interaction networks
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In this work, we analyze the degree frequency distribution in the yeast protein interaction network by
studying a previously proposed duplication network model. This model correctly predicts the observed degree
distribution (a power law for large degree values and a departure from this behavior for small )d&bece
numerically and analytically characterize this distribution as a mixture of random and power-law behavior, and
make a comparative study of the robustness of the network model against realistic perturbations. We conclude
that the particular distribution observed in both the model and the experimental data has many advantages in
terms of dynamical and topological robustness and could have emerged in the evolutionary history as a sort of
compromise between purely deterministic and random underlying mechanisms of network growth.
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The study of complex networks has seen an enormous risdifferent datasets and remained qualitatively similar while
in interest in the last few years, particularly since the discovnew interactions were added is the distribution of connectiv-
ery that a large variety of social, biological, and communi-ity between nodes, which has been claimed to be scale-free
cational networks share some common topological propertiein previous works. Other topological magnitudssch as the
that deviate from those of random netwofkg. Among the clustering coefficientappear to be more sensitive to dataset
most studied and celebrated of these topological propertiegariation.
are the small-world and scale-free features. Scale-free net- In this work, we characterize the distribution of connec-
works are highly heterogeneous: very few highly connectedivity (or degre¢ between nodes in the yeast protein interac-
nodes(or “hubs” organize the wiring, and the frequency tion network. The baker’s yea$B. cerevisiagis the model
distribution of connectivity of nodes follows a power law, organism of eukaryotes, and its interaction network dataset is
which is interpreted as a signature of nontrivial behavior. the most cured among the species studied. We compare this

The emergence of scale-free networks in the biologicahetwork to a simple yet successful model of network growth
context(metabolic and protein interaction netwoykes cap- via partial duplication of nodes introduced by Saé al.
tured a great deal of attention because of the possible evol{i10]. This model mimics the main process of proteome de-
tionary advantages of a scale invariance at the level of celvelopment: gene duplication followed by a functional diver-
lular organizatior 2]. It was argued that the high resilience gence of the cloned pairs. Unlike previous studies on dupli-
of some organisms against gene removal in gene-knockouation models that emphasized the scale-free behavior of the
experiments has its counterpart in the robustness against ratlegree distribution for large connectivity valugkl], we
dom node removal of the underlying scale-free networkstudy the behavior of the distribution over the entire range of
Moreover, a topological property of the protein network connectivity values. We perform a maximum likelihood
(node connectivity apparently correlates with protein dis- analysis of the model and refine a previously derived analyti-
pensability[3]. However, there remain several controversialcal distribution. We also show that this particular shape is
issues. The apparent robustness against gene removal r@bust in parameter space and arises from the simultaneous
strongly conditioned by the nutrient-rich environment in theaction of an implicit preferential attachment and a random
experiment$4], and it is not clear at all if the connectivity of rewiring.

a protein in the network is related to its evolutionary impor-  Finally, we compare the robustness of the yeast protein
tance[5]. Also, there is some controversy regarding whetheiinteraction network to the networks obtained from three dif-
the apparent scale-free behavior is a result of selection or ferent modelgduplication-divergence, Barabasi-Albert, and

side effect of the dynamics of network growiB]. Further-  Erdds-Renyi and discuss the results obtained in the light of
more, as we will show in this work, the scale-free nature ofmore recent studies in protein dispensability and topological
the protein interaction network can be hardly demonstratedobustness.

from the experimental data available. Despite the enormous variety of proteins, they can be

In a protein interaction network, two proteins are neigh-classified into families, according to similarities in structure
bors if they physically interadn vivo. These networks are and function. These families are explained by the hypothesis
obtained from a wealth of binary protein-protein interactionthat their members have evolved from a common ancestor. It
data from a variety of experiments: high-throughput meth4s thought that this evolution took place mostly through
ods, such as the two-hybrid assdy’], and mass- single or multiple gene duplication. After the random dupli-
spectrometric complex identificati¢B]. The interactions de- cation of a gene there will be two cloned genes expressing
rived from different datasets only match partially, and eventhe same redundant function. As a consequence, one or both
though these datasets are cured in diverse databases, a hdgplicates should experience relaxed selective constraints
of false positives and/or negatives still remajf$ Surpris- and be more prone to mutations, becoming nonfunctional or,
ingly, the only topological feature that is conserved betweerin some cases, gaining novel and beneficial functions. In this
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way, new genes that code for new proteins are created withip(k) =N,/N. The first two terms on the right-hand side of

a genome. Eq. (1) correspond to the contribution of nodes that are not
This mechanism can be translated into a few simple growthe duplicated one. Factors of the formldiN stand for the

ing rules for a network model, as proposed by Seféal.  probability of a node of degrele to have a neighbor dupli-

[10]. A description of the rules of the model follows. Starting cated, increasing its degree by unity. These terms act only

from a small and arbitrary initial network, the gr_aph CO”_S?St'conveying the probabilitp(k) from lower to higher degree

ing of No nodes ands, edges suiffers the following modifi- 51 es. On the other hand, the last term corresponds to the

caltlor;sdln edach Q|zcr§t(al t(;me ite@é a__n‘c;ge Iij randcf>Tth degree of the new node and contributes to all degree values.
selected and copied, including its edgés; the edges of the We will refer to this last term as the source te@(k). The

new node are deleted with probabilify and (iii) new edges . .
are randomly added betwegn the C?;Jied Eloéie and agy oth&p9dree of the duplicated node is selected from the degree
istributionp(k’) =N, /N, as expressed in the first sum, and

node in the graph with probability. ) ! ' L
Step (i) mimics a gene duplication process, where thelt undergoes a series of possible combinationss@nd g,

cloned nodes are linked to the same neighltioes, have the ~condensed in the second sum, leaving as a result a distribu-

same functions and stepsii) and (i) represent functional tion of new nodes with degree

divergence. From a geometrical point of view, the main at- It is interesting to analyze two limiting cases of the

tribute of a node is its degrée(number of edges model: a case without creation of new ed@gs0) and the
This scheme is intended to capture only global topologicatase where all edges are néd=1 andB>0). In the first

properties of the proteome, since no protein functionality iscase, the number of isolated nodé&gN) can only vary when

included. However, it is remarkable that such a simple, bioa duplicated node with degrel’ loses k’ edges. Then,

logically inspired model displays a degree frequency distrithe variation in the population of the zero stdtsolated

bution p(k) nearly identical to the real proteome. Previousnodes is

works[10,11] have studied the contraints and possible values

of the two free parameters of the model. By focusing on the

average degree of the netwdg, it is straightforward to see

that: (i) the parameter must be normalized by the total N N (N)
number of nodes. We consequently define 3/N as the No(N+ 1) = Ng(N) = >, N 5. 3)
probability (per nodé of adding new edges to the cloned k'=0

node and use3 as our control paramete(ii) In order to

obtain a stationary distributiop(k), the deletion parameter N . ;
ought to bes>0.5. N (N)=p(k)N (time dependence is throudt only), where

In order to gain some insight into the mechanisms thafP(K)=0 for k=1 andp(0)=1, so the network becomes the

shape the network generated by this model, we start by writrivial one. In thi; limiting case, there is a decoupling be-
ing down the variation over one time stépe., the master tween the dynamics of the isolated nodes and the rest of the

equation of the average number of nodes whredgesN,. ~ network. When a node becomes disconnected it cannot be
Note that’ since the growing of the network is uniform, thereconneCtEd and, in thié> 1 ||m|t, the fraction of connected
size of the networkN plays the role of the discrete tinte  nodes is negligible. If we are not interested in the stationary
=N-N,. The master equation fd¥, was studied by Kinet  limit, then it can be demonstrated that the connected nodes
al. [11]. However, while they focused in the large degreehave a power-law distributiofil2]. In fact, this is the only
limit, we will focus on the prediction of the model for low case when one can obtain a pure scale-free degree distribu-
and intermediate connectivity values. This master equatiotion.

It is straightforward to analyze the stationary limit

can be written as The other extreme case is when no edges are inherited by
(k=1) the cloned node. This is, actually, a purely random growing
Nu(N+1) = NuN) = | o+ —2(1 = 8)(1 - N (N network, therefore, the distribution of connectivity between
AN+D) = N(N) {a N (Lo a)} c1(N) nodes is Poissonian.

K Between these two limiting cases we obtain a mixture of
- [a +—(1-98@1- a)] Ne(N) + G(N), power-law and random behavior. For15>0.5 andB>0

N the degree distribution of the model displays a distinctive

(1) shape that is qualitatively similar to those of the experimen-

tal networks. This shape has a clear power-law tail only for

where the most connected nodépproximately folk > 20) and dis-
o plays a severe departure of one or two orders of magnitude
NN MR e N N for low connectivity values.
Gi(N) = > N _224) (k’ i )(k—i ) We now characterize this particular distribution by deriv-
k'=0 i=

ing an approximate analytic solution of the master equation
XK1 = 8)iak(1 = a)VK. 2 vall_d for all connectivities in the stanonar_y limit. We follow
( Yo (1-a) @ a similar approach to that used by Krapivsiiyal. in [13].
A connection with the probability density for the degree Assuming an asymptotic solution for the degree distribution
of the network can be made for large network sizesN,(N)=p(k)N, the source tern2) can be rewritten as
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o min(k,k") K
Gy = lim G= 2 pk) X ( ,_.)
N—oo K'=0 i=0 k |
/_i 0.1t
_ i pk-ig—B
e (4)

and the rate equatiofi) becomes

X

0.01 |

pk)

p(k) =[B+ (k=11 -9]pk=1) = [B+k(1-3]p(K) +Gy.
(5) 0.001

This equation reveals an implicit preferential attachment
rule for the duplication model, since factors linear wkh
appear in terms corresponding to nodes linked to the dupli-
cated ong14]. This preferential attachment rule is controlled
by paramete® and guarantees a power-law degree distribu- FIG- 1. The dggrge distribution obtained from averaged simula—
tion [1]. On the other hand, terms wit contribute to the tions of the duplication modgl eyolveN:GOOO time steps V_V'th
random character of the network growth. The roles played byarameter$g=0.22, 5=0.55 (thick line) compared to the distribu-
the parameters of the model were apparent when we prev ion derived from the yeast proteontblack circle3, the analytic

ously analyzed the two limiting cases. In order to obtain a2PProximation expressed by Eq$) and (7) (thin line) and the

more explicit expression for the stationary degree distribu—"’lsympwt'c power-law distribution for higk values(dotted line.

tion we can derive, by iterating the preceding form®,  so on. Therefore it is possible to calculate an approximate

the following recurrence relation: distribution with a reasonable degree of accuracy much more
efficiently than numerically solving Ed1).
B 1+ Let us now compare the degree distribution of the model
k-1 +1T5 ! 1-5 ! 1 to the degree distribution obtained from a real proteome. As
p(k) = p(0) + H(Kk), we already pointed out, the distributions are qualitatively
(L _ 1>| (k+ ﬂg>| (1-9) similar for all parameter values that bring a stationary distri-
1-6 ' 1-6/)° bution (excluding some extreme case$urthermore, for

(6) Some parameter values of the model we can also obtain a
quantitative agreement between the two distributions. We
used cured data from the DIP datab$6] for the baker’s
yeast (Saccharomyces cerevisjaproteome, the model or-

ganism of eucaryotes.
e

where

K=1+—— We performed a maximum likelihood analysis of the

1+
K (k 1=+ 1-96 1-6) model, assuming a Gaussian dispersion of the experimental
H(k) = E 1+ B Gicj- p(k) values and obtained both a pair of optimal parameters
1=0 (k+ )! (k— 1-j+ )! (8=0.22,6=0.55 and a goodness of fit estimation. A maxi-
mum likelihood test against a power-law distribution gave us
(7) a goodness of fit estimator two orders of magnitude below of
- . . that of the model. Even when we take into account daly
The coefficientp(0) is calculated solving1) for k=0. > 20 values(a range where the power law is well estab-

As it was previously addressed, in the>1 limit, the |ished, the goodness of the fit estimator is still greater for
expressior(6) becomes a power-law with &dependent ex-  the model. Note that the power-law range includes only the
ponent[11]. Simulations confirm a slow convergence of the 505 of the population. A noteworthy fact is that if we disre-
tail of p(k) to this behavior. The power-law distribution is gard thek=0 value, a lognormal distribution fit the experi-
valid for largek because this limit endows the implicit pref- mental distribution quite well.
erential attachment with enough power to shadow the purely |t should be pointed out that there are no consistent esti-
stochastic process of the model, controlled ByThe re-  mation measures of the divergence parameters. Hence, the
quirement for the onset of this regimeks>(1+8)/(1-5),  only purpose of fitting the model to the experimental data is
since this is the most relevant parameter repeatedly neglected discern if these mechanisms of evolution could be respon-
when we approximated the factorials(®) using the Stirling  sible for qualitatively shaping the proteome.
formula. In order to obtain an analytical approximation for In Fig. 1 we show the degree distributions obtained from
the full degree distribution, we replaggk’) in the source the yeast proteome, simulations of the model with parameter
term Eq.(4) by a reasonable zeroth-order approximation andvalues obtained from the maximum likelihood analysis, and
obtain a first-order approximation usiri§) and (7). To im-  the approximate analytic solutioffourth ordej obtained
prove the accuracy of the approximation, one could repedtrom Eqgs.(6) and(7). As can be seen in the figure, the model
this process by inserting the first-order approximation in thecorrectly predicts the departure of the power-law behavior
source term and obtaining a second-order approximation anfdr low connectivity values.

1-6
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As far as we know, previous works have not focused on ! ' '
the departure from the scale-free behavior for lowalues.

The work of Jeonget al. [3] proposed a phenomenological
curve: a generalized power law with an exponential cutoff
for large k values, and subsequent studies focused on the
scale invariance as the relevant feature. Now two questions
naturally ariseia) Is this departure from the power-law be-
havior significant or is it a product of experimental biases?
(b) Does it reflect some topological property of the network
that is relevant to the protein interaction network?

In order to answer the first question we checked that the 105 . .
departure is not a product of experimental biases of false 0.001 0.01 0.1 1
negatives and/or positives of the assessing methods. We stud- Closeness relative variation
ied three different datasets for the yeast proteome: noncured ) ) o
data from double-hybrid experimentsith many false posi- FIG. 2. Histograms of the relatlye varlqtlon of the global close-
tives), core dataset from the DIP databd®éth presumably ~ness of the networks, after removing a single node. The qetworks
many false negativésand the more confident cured data Were created by a purely random modguarey the duplication-
from DIP (dlsplayed in F|g 1 In the three cases we ob- d|Vergence model W|th' pal’ameter ValqﬁSO.Z and5=0.§5 (t”'
served the low connectivity departure and the model fitted@"dles, and the Barabasi-Albert modgdircles. Computations are
the dataset for some parameter values. Even for protein iﬁ'[_}a(_je over 100 realizations for each model, every re_allzatlon con-
teraction networks datasets obtained from more recent higrﬂSt'”g of the same number of nodé§~1000 and links ((k)
throughput experiments from other spediBs melanogaster

[17] and C. elegans16]) with less reliable(or not cured  preaks up into components and as the length of the paths
data, we observed a qualitatively curved distribution and &etween nodes increaséwo things that clearly deteriorate
good agreement with the duplication modédata not the performance of the protein interaction network
shown). The usual perturbation for the internal structure of a net-
Our second question can be investigated through the momgork is to sequentially remove nodes until the network
relevant property derived from scale-free networks: its topobreaks up. However, this is not a biologically reasonable
logical robustness. Previous works that highlighted theperturbation because a protein interaction network with half
power-law character of the distributions claimed that beingof the nodes removed is not viabld]. We make use of a
scale-free, protein networks could be more robust to randormore realistic failure simulation: a random deletion of one or
mutations and, therefore, in a more favorable posiffoom  very few genes(nodes. Also, as we are interested in all
an evolutionary point of viey In fact, it is well known that possible cases, we take account of all closeness variations
scale-free networks are more robust than random networkaver the whole network against all possible node removals.
under accidental node remoVdl8]. However, some of the In this way we can measure the network robustness in terms
“worst” node attacks(such as hubscould be much more of a topological analog of the viability of a protein network
harmful in scale-free than in purely random networks. Fromagainst realistic perturbations.
this last observation it is clear that scale-invariant networks In Fig. 2 we display the histograms obtained for the rela-
could not be the more robust topology in the long tdah  tive closeness variation against all possible single-node re-
though rare, hubs removal could happen movals for the three network models. In all cases we started
In order to investigate this last hypothesis we performed avith networks ofN~1000 andk) =~ 2. Even when the three
comparative analysis for the topological robustness for threeetworks have an average closeness variation of the same
different models with three characteristic degree distribu-order of magnitude, the three distributions are clearly differ-
tions: (@) a random network or duplication model wife1  ent. In the case of the random network there are many node
(peaked distribution (b) a duplication model with param- removals that cause drops in the closeness of 1%, but there
eters that fit the curved experimental distribution, dofd  are no cases of catastrophic node remoyadsme of the per-
pure scale-free distributiorfobtained with the Barabasi- turbations cause drops greater than)5®%@n the contrary,
Albert model[1]). most of the perturbations of the pure scale-free network pro-
The property of topological robustness takes account ofluce a very small effect in the global closeness, while there
the insensitivity of some global measure of the network tois a small but significative fraction of node removééo of
specific changes in its structure. In a biological context wethe casesthat causes great closeness variatiéh®ps of
have to define a good global equivalent of “fitness” or viabil-more than 5%and a few that cause a catastrophic drop-off
ity for a protein interaction network and a realistic perturba-in global closenesgote the long tail of the distributionin
tion in its internal structure. Because there are no flows inthis context, the duplication model represents an intermedi-
side a topological representation of the protein interactiorate case. This suggests that the mixture of being scale-free
network, the more adequate measure of viablity is the topoand random could have emerged as a sort of compromise
logical closenes$19] (also called efficiency i120]). This  between two behaviors that have their own benefits under
quantity grows with both the degree of compactness of thelifferent circumstances.
network and the closeness between noghesasured by the From the point of view of a living organism, a scale-free
inverse of the path lengthand decreases as the network proteome represents an advantage in the short term, but over
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long evolutionary time scales some randomness wiring couldized the claimed scale-free behavior of this distribution and
also be beneficia]21]. The curved degree distribution ob- pointed out a severe departure in both the duplication model
served in all experimental protein interaction networks de-and experimental data. The emerging distribution was ex-
rived to the date strongly suggests that a mixture of scalglained as an interplay between a preferential attachment rule
invariance and randomness could be more appropriate thanaad a purely random process. Even when we cannot draw
perfect scale-free network in the long term and a purely rangeneral conclusions for the protein interaction network from
dom network in the short term. Furthermore, this distributionihe study of a single species, our prelimany studies of the
can be obtained in a very robust manner from a simplesgeqyork robustness under realistic perturbations suggests
model of duplication and divergence of genes, which has @5t the interplay between deterministic evolutionary
clear b|olog|qal basis. In the divergence proc(sreswrlng of memory(from the duplication procegsind pure randomness
nodes there is some memory of the copied nddeat con- make possible a better environmental response for a biologi-

Veys a deterr_nlmstlc pr_eferenual attachment yuled some cal network than a purely random or deterministic preferen-
randomness in the rewiring. The balance between these twg

i . . tial attachment underlying mechanism.
processes could have emerged in the evolutionary history as
a product of natural selection over the whole protein net-
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